Mathematics 222B Lecture 3 Notes

Daniel Raban

January 25, 2022

1 Approximation in Bounded Domains and the Extension Theorem

Today, our goals are

- Prove approximation (or density) theorems for Sobolev spaces.
- Prove extension theorems and the trace theorem (tools for dealing with $W^{k, p}(U)$ when U is a bounded domain).

1.1 Approximation theorems in bounded domains

Given $u \in W^{k, p}(U)$, we want to approximate it by something that is "better" (e.g. u is smooth or has a nice support property). Last time, we discussed two tools:

1. Convolution and mollification: If $f, g: \mathbb{R}^{d} \rightarrow \mathbb{R}$, then

$$
f * g(x)=\int f(x-y) g(y) d y
$$

This has the property that

$$
\partial_{x_{j}}(f * g)(x)=\partial_{x_{j}} f * g(x)=f * \partial_{\partial_{x_{j}}} g(x) .
$$

This means that you only need one of the functions to be smooth to get a smooth result.
For $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, if we denote $\varphi_{\varepsilon}=\frac{1}{\varepsilon^{d}} \varphi(\cdot / \varepsilon)$, then

$$
\varphi_{\varepsilon} f \xrightarrow{\varepsilon \rightarrow 0} f,
$$

where the left hand side is smooth. If $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, this convergence is convergence of distributions, and if $f \in L^{p}\left(\mathbb{R}^{d}\right)$, this convergence is in L^{p}.
2. Smooth partition of unity: If $\left\{U_{\alpha}\right\}_{\alpha} \in A$ is a collection of open sets (usually $U \subseteq$ $\left.U_{\alpha \in A} U_{\alpha}\right)$ then there exist functions $\chi_{\alpha}(x)(\alpha \in A)$ such that
(i) χ_{α} is smooth.
(ii) $\sum_{\alpha \in A} \chi_{\alpha}=1$ on U, where for all $x \in U$, $\chi_{\alpha}(x)=0$ except for finitely many α.
(iii) $\operatorname{supp} \chi_{\alpha} \subseteq U_{\alpha}$.

Theorem 1.1. Let $k \geq 0$ be an integer and $1 \leq p<\infty$.
(i) $C^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{d}\right)$.
(ii) $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{d}\right)$.

Proof.
(a) This is an application of mollification
(b) Approximate by $f \chi(1 / R)$, letting $R \rightarrow \infty$, where $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is such that $\chi(0)=$ 1.

Theorem 1.2. Let $k \geq 0$ be an integer, $1 \leq p<\infty$, and U an open subset of \mathbb{R}^{d}. Then $C^{\infty}(U)$ is dense in $W^{k, p}(U)$.

Proof. Let $u \in W^{k, p}(U)$, and fix $\varepsilon>0$. We want to find $v \in C^{\infty}(U)$ such that $\|u-v\|_{W^{k, p}} \leq$ ε.

Define $U_{j}=\{x \in U: \operatorname{dist}(x, \partial U)>1 / j\}$, and let $V_{j}=U_{j} \backslash \overline{U_{j+1}}$

Then $U \subseteq \bigcup_{j=1}^{\infty} V_{j}$, so there is a smooth partition of unity χ_{j} subordinate to V_{j}. Now split

$$
u=\sum_{j=1}^{\infty} \underbrace{u \chi_{j}}_{:=u_{j}}
$$

Then, as supp $\chi_{j} \subseteq V_{j}$, we have that $\operatorname{supp} u_{j}=\operatorname{supp}\left(u \chi_{j}\right) \subseteq V_{j}$. Moreover, $u_{j} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.

If we let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\int \varphi=1$ and $\operatorname{supp} \varphi \subseteq B_{1}(0)$ is a mollifier, let $v_{j}=\varphi_{\varepsilon_{j}} * u_{j}$, where ε_{j} is chosen to achieve

$$
\left\|u_{j}-v_{j}\right\|_{W^{k, p}} \leq 2^{-j \varepsilon}, \quad \operatorname{supp} v_{j} \subseteq \widetilde{V}_{j}=U_{j-1} \backslash \overline{U_{j+2}}
$$

Here, we make use of the fact that supp $f * g \subseteq \operatorname{supp} f+\operatorname{supp} g=\left\{\underset{\sim}{x}+y \in \mathbb{R}^{d}: x \in\right.$ $\operatorname{supp} f, y \in \operatorname{supp} g\}$. Now take $v=\sum_{j=1}^{\infty} v_{j}$. This is well-defined, as \widetilde{V}_{j} is locally finite. This is also smooth, so $v \in C^{\infty}(U)$. On the other hand,

$$
\|v-u\|_{W^{k, p}} \sum_{j=1}^{\infty}\left\|v_{j}-u_{j}\right\|_{W^{k, p}} \leq \sum_{k=1}^{\infty} 2^{-j} \varepsilon=\varepsilon .
$$

Theorem 1.3. Let $k \geq 0$ be an integer, $1 \leq p<\infty$, and U a bounded open set with ∂U of class C^{1}. Then $C^{\infty}(\bar{U})$ is dense in $W^{k, p}$.

Here, $C^{\infty}(\bar{U})$ is the set of functions $u: U \rightarrow \mathbb{R}$ such that u is the restriction to U of a smooth function $\widetilde{u} \in C^{\infty}(\widetilde{U})$, where $\widetilde{U} \supseteq \bar{U}$ is open.
Definition 1.1. We say that ∂U is of class C^{k} if for all $x_{0} \in \partial U$, there exists a radius $r=r\left(x_{0}\right)>0$ such that, up to relabeling the variables, $B_{r}\left(x_{0}\right) \cap U=\left\{x \in B_{r}\left(x_{0}\right): x^{d}>\right.$ $\left.\gamma\left(x^{1}, \ldots, x^{d-1}\right)\right\}$ for some C^{k} function $\gamma=\gamma\left(x^{1}, \ldots, x^{d-1}\right)$ on $B_{r}\left(x_{0}\right) \cap\left(\mathbb{R}^{d-1} \times\left\{x_{0}^{d}\right\}\right)$.

For the proof, we want to apply mollification, but the difficulty is what happens near the boundary. The idea is to first look at a small piece of the boundary at a time.

Proof. Step 1: Let $u \in W^{k, p}(U)$. By the definition of C^{1}-regularity of $\partial U, \partial U$ can be covered by balls $\left\{B_{r_{k}}\left(x_{k}\right)\right\}_{k=1}^{K}$, in each of which U can be represented as the region above some C^{1} graph. The number of such balls, K, is finite by the compactness of ∂U. We may add to $U_{k}=B_{r_{k}}\left(x_{k}\right)$ an open set U_{0} which contains $U \backslash \bigcup_{k=1}^{K} U_{k}$, so that $\left\{U_{0}, U_{1}, \ldots, U_{k}\right\}$ is an open covering of U.

Let $\left\{\chi_{k}\right\}_{k=0}^{K}$ be a smooth partition of unity subordinate to $\left\{K_{k}\right\}_{k=0}^{K}$, and split

$$
u=\sum_{k=0}^{\infty} u \chi_{k}=: u_{0}+\sum_{k=1}^{K} u_{k} .
$$

Here, u_{0} is compactly supported, and $u \in W^{k, p}\left(\mathbb{R}^{d}\right)$, so we can use mollification, as before.
To deal with the u_{k} with $k \geq 1$, it suffices to consider the case where $U=B_{r_{0}}\left(x_{0}\right)$ and supp $u_{k} \subseteq V \subseteq U$, where V is a smaller ball $B_{r_{0}^{\prime}}\left(x_{0}\right)$, in which $B_{r_{0}}\left(x_{0}\right) \cap \partial U$ is more concrete.

Step 2: Without loss of generality, assume $x_{0}=0$.

We use a two-step approximation. Let $\varepsilon>0$.

1. Let $w_{\eta}(x)=u\left(x+\eta e_{d}\right)$, where $e_{d}=(0,0, \ldots, 0,1)$, and η will be chosen. Then $\operatorname{supp} w_{\eta}$ is the support of u shifted by 1 . For η small enough, we have

$$
\left\|u-w_{\eta}\right\|_{W^{k, p}\left(U \cap B_{r_{0}}(0)\right)}<\frac{1}{2} \varepsilon .
$$

Moreover, ε is defined on $B_{r_{0}}(0) \cap U-\eta e_{d}$
2. Let $v=\varphi_{\delta} * w_{\eta}$, and if $\delta \ll \eta$ (and $\left.\operatorname{supp} \varphi \subseteq B_{1}(0)\right)$, then v is well-defined on $V \cap\left\{x^{d}>\gamma\left(x^{1}, \ldots, x^{d-1}\right)\right\}$. And if δ is sufficiently small, then

$$
\left\|v-w_{\eta}\right\|_{W^{k, p}\left(U \cap B_{r_{0}}\left(x_{0}\right)\right)}<\frac{1}{2} \varepsilon .
$$

This gives us

$$
\|u-v\|_{W^{k, p}(U)} \leq \frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon .
$$

Moreover, $v \in C^{\infty}\left(\overline{V \cap\left\{x^{d}>\gamma\left(x^{1}, \ldots, x^{d-1}\right)\right\}}\right)$, which is acceptable.

1.2 The extension theorem

The extension theorem is a tool to deal with $u \in W^{k, p}(U)$, where U is a bounded domain, by producing an extension of $u \in W^{k, p}\left(\mathbb{R}^{d}\right)$ with quantitative bounds on the extension.

Theorem 1.4 (Extension theorem). Let $k \geq 0$ be a nonnegative integer, $1 \leq p<\infty, U$ a bounded domain with with C^{k} boundary. Let V be an open set such that $V \supseteq \bar{U}$. Then there exists an operator $\mathcal{E}: W^{k, p}(U) \rightarrow W^{k, p}\left(\mathbb{R}^{d}\right)$ such that
(i) $\left(\right.$ Extension) $\left.\mathcal{E} u\right|_{U}=u$.
(ii) (Linear and bounded) \mathcal{E} is linear, and $\|\mathcal{E} u\|_{W^{k, p}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{W^{k, p}(U)}$.
(iii) (Support prescription) $\operatorname{supp} \mathcal{E} u \subseteq V$.

Proof. Observe that, by the previous approximation theorem, it suffices to consider $u \in$ $C^{\infty}(\bar{U})$ (by density and the boundedness property (ii)).

Step 1: (Reduction to the half-ball case) As in Step 1 in the proof of the previous theorem, construct the open sets $U_{0}, U_{1}, \ldots, U_{K}$ and the partition of unity $\chi_{0}, \chi_{1}, \ldots, \chi_{k}$. Define $u_{k}=\chi_{k} u$, and observe that

- u_{0} is already in $W^{k, p}\left(\mathbb{R}^{d}\right)$ and $\operatorname{supp} u_{0} \subseteq U_{0} \subseteq V$,
- $u_{k} \in C^{\infty}(\bar{U})$, and $\operatorname{supp} u_{k} \subseteq B_{r_{0}} \subseteq U_{k} \cap U$.

Observe that if we change variables

$$
\left\{\begin{array}{l}
y^{j}=x^{j}-x_{0}^{j} \\
y^{d}=x^{d}-\gamma\left(x^{1}, \ldots, x^{d-1}\right),
\end{array} \quad \text { for } j=1, \ldots, d-1\right.
$$

then $U_{k} \cap U$ gets mapped into $\left\{y \in B_{\widetilde{r}}(0): y^{d}>0\right\}$.

Note that the change of variables $x \mapsto y$ is C^{k}, and u_{k} is smooth, so $u_{k}(y)=u_{k}(x(y))$ satisfies, by the chain rule,

$$
\left\|u_{k}(y)\right\|_{W_{y}^{k, p}(\widetilde{U})} \leq C\left\|u_{k}(x)\right\|_{W_{x}^{k, p}}
$$

Step 2: (Extension in the half-ball case) Now we have $U=B_{r}^{+}(0), W=B_{r / 2}^{+}(0)$, and $\operatorname{supp} u \subseteq W$, and we want to extend u. The idea is the higher order reflection method. Define

$$
\widetilde{u}=\widetilde{u}= \begin{cases}u & x^{d}>0 \\ \sum_{j=0}^{K} \alpha_{j} u\left(x^{1}, \ldots, x^{d-1},-\beta_{j} x^{d}\right) & x^{d}<0\end{cases}
$$

where the scaling factor $0<\beta_{j}<1$ is chosen so that $\left(x^{1}, \ldots, x^{d-1},-\beta_{j} x^{d}\right) \in B_{r}^{+}(0)$. We need to match the normal derivatives on $\left\{x^{d}=0\right\}$ up to order k. Observe that $\partial_{x^{d}}^{j}\left(u\left(x^{1}, \ldots, x^{d-1}-\beta_{j} x^{d}\right)\right)=(-1)^{j} \beta_{j}^{j}\left(\partial_{x^{d}}^{j} u\right)\left(x^{1}, \ldots, x^{d-1},-\beta_{j} x^{d}\right)$. We get

$$
\left\{\begin{array}{l}
u\left(x^{1}, \ldots, x^{d-1}, 0+\right)=\sum_{j=0}^{K} \alpha_{j} u\left(x^{1}, \ldots, x^{d-1}, 0-\right), \\
\partial_{x^{d}} u\left(x^{1}, \ldots, x^{d-1}, 0+\right)=\sum_{j=0}^{k} \alpha_{j}\left(-\beta_{j}\right)\left(\partial_{x^{d}} u\right)\left(x^{1}, \ldots, x^{d-1}, 0+\right) \\
\vdots \\
\partial_{x^{d}}^{k} u\left(x^{1}, \ldots, x^{d-1}, 0+\right)=\sum_{j=0}^{k} \alpha_{j}\left(-\beta_{j}\right)^{k}\left(\partial_{x^{d}}^{k} u\right)\left(x^{1}, \ldots, x^{d-1}, 0+\right)
\end{array}\right.
$$

This is equivalent to

$$
\left\{\begin{array}{l}
1=\sum_{j=0}^{K} \alpha_{j} \\
1=\sum_{j=0}^{K} \alpha_{j}\left(-\beta_{j}\right) \\
\vdots \\
1=\sum_{j=0}^{K} \alpha_{j}\left(-\beta_{j}\right)^{K}
\end{array}\right.
$$

Written in matrix form, this is a linear system involving a Vandermonde matrix

$$
\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
-\beta_{0} & -\beta_{2} & \cdots & -\beta_{K} \\
\vdots & \vdots & \vdots & \vdots \\
\left(-\beta_{0}\right)^{K} & \left(-\beta_{2}\right)^{K} & \cdots & \left(-\beta_{K}\right)^{K}
\end{array}\right]\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{K}
\end{array}\right] .
$$

Now use that fact that if all the β_{j} are distinct, then this matrix is invertible. This means that there is a choice of $\left(\alpha_{0}, \ldots, \alpha_{K}\right)$ so that these equations hold. This defines \widetilde{u} on $B_{r}(x)$ which extends u and matches all derivatives up to order K on the boundary $\left\{x^{d}=0\right\}$. Finally, put an appropriate smooth cutoff $\chi_{V}=1$ on U with $\operatorname{supp} \chi_{V} \subseteq V$ to define $\mathcal{E} u$, i.e. $\mathcal{E} u=\chi_{V} \widetilde{u}$.

