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1 Approximation in Bounded Domains and the Extension
Theorem

Today, our goals are

e Prove approximation (or density) theorems for Sobolev spaces.

e Prove extension theorems and the trace theorem (tools for dealing with W*P(U)
when U is a bounded domain).

1.1 Approximation theorems in bounded domains

Given u € WHP(U), we want to approximate it by something that is “better” (e.g. u is
smooth or has a nice support property). Last time, we discussed two tools:

1. Convolution and mollification: If f, g : R? — R, then

fro@) = [ fla =gty dy.
This has the property that

O, ( * 9)(@) = B0, ] # g(x) = [ * Oy, g(a).

This means that you only need one of the functions to be smooth to get a smooth
result.

For ¢ € C°(RY), if we denote o, = E%gp(-/s), then

e—0

Qoé‘f—>f7

where the left hand side is smooth. If f € D'(RY), this convergence is convergence of
distributions, and if f € LP(R%), this convergence is in L?.



2. Smooth partition of unity: If {U,}s € A is a collection of open sets (usually U C
UacaUy) then there exist functions x4 (x) (o € A) such that

(i) Xa is smooth.
(i) > pecaXa =1 on U, where for all z € U, xo(z) = 0 except for finitely many a.
(iii) supp xa C Us.
Theorem 1.1. Let k > 0 be an integer and 1 < p < oo.
(i) C=(R?) is dense in WFP(R?).
(ii) C(RY) is dense in WHP(RY).
Proof.

(a) This is an application of mollification

(b) Approximate by fx(1/R), letting R — oo, where xy € C°(R%) is such that x(0) =
1. O

Theorem 1.2. Let k > 0 be an integer, 1 < p < oo, and U an open subset of R?. Then
C>®(U) is dense in WkP(U).

Proof. Let u € W*P(U), and fix e > 0. We want to find v € C*°(U) such that ||u—v||yye, <
E.

Define U; = {x € U : dist(xz,0U) > 1/j}, and let V; = U; \ Uj11

Then U C |52, V5, so there is a smooth partition of unity y; subordinate to V;. Now split
j=1"YJ J J

Then, as supp x; C Vj, we have that suppu; = supp(uy;) € V;. Moreover, u; € C>®(RY).



If we let p € C°(RY) with [ =1 and supp ¢ C B1(0) is a mollifier, let v; = Pe; * Uj,
where ¢; is chosen to achieve

luj = vjllwes <2795, suppuv; € V= U1\ Tjra.

Here, we make use of the fact that supp f * g C supp f +suppg = {z +y € R : z €
supp f,y € suppg}. Now take v = Z;il vj. This is well-defined, as V; is locally finite.
This is also smooth, so v € C*°(U). On the other hand,

oo o0 )
lo = wllwse D lloj = ujllwes <Y 279 = O
j=1 k=1

Theorem 1.3. Let k > 0 be an integer, 1 < p < oo, and U a bounded open set with OU of
class C*. Then C=(U) is dense in WP,

Here, C°°(U) is the set of functions u : U — R such that u is the restriction to U of a
smooth function u € C*°(U), where U D U is open.

Definition 1.1. We say that OU is of class C* if for all zy € U, there exists a radius

r = r(x0) > 0 such that, up to relabeling the variables, B,(vo) N\U = {z € B,(xo) : 2 >

y(zt, ..., 2971} for some CF function v = y(x!,...,2%71) on B,(zo) N (R4 x {zd}).

For the proof, we want to apply mollification, but the difficulty is what happens near
the boundary. The idea is to first look at a small piece of the boundary at a time.

Proof. Step 1: Let u € W*P(U). By the definition of C'-regularity of OU, U can be
covered by balls {B,, (z)}X |, in each of which U can be represented as the region above
some C! graph. The number of such balls, K, is finite by the compactness of OU. We may
add to Uy = By, (z1) an open set Uy which contains U \ Ule Uy, so that {Uy, Un,...,Us}
is an open covering of U.




Let {xx}5_, be a smooth partition of unity subordinate to {Kj}< ,, and split

00 K
uzg uXk::ug—i—E UL -
k=0 k=1

Here, ug is compactly supported, and u € W¥P(R9), so we can use mollification, as before.
To deal with the uy with k£ > 1, it suffices to consider the case where U = B, (o)
and suppuy €V C U, where V' is a smaller ball B,/ (o), in which By, (z9) N 0U is more
concrete.
Step 2: Without loss of generality, assume ¢ = 0.

Br.(*)
B0 0 = § %= (el a1

Bro’ G) = V

We use a two-step approximation. Let € > 0.

1. Let wy(z) = u(x + neq), where e = (0,0,...,0,1), and n will be chosen. Then
supp wy, is the support of u shifted by 1. For n small enough, we have

1
lu = wyllwwr@wns,, o) < 5¢
Moreover, ¢ is defined on B,,(0) N U — ney

2. Let v = ps5 * wy, and if § < 7 (and suppy C B1(0)), then v is well-defined on
V{z? > ~(zt, ..., 29 Y}, And if 6 is sufficiently small, then

1
v — wUHW’“vP(UﬂBTO(a:O)) < 55-
This gives us

1 1
H'LL — UHWk,p(U) < 55 + 55 = €.

Moreover, v € C®°(V N {z? > y(x!,...,z49=1)}), which is acceptable. O




1.2 The extension theorem

The extension theorem is a tool to deal with u € W*P(U), where U is a bounded domain,
by producing an extension of u € W*P?(R?%) with quantitative bounds on the extension.

Theorem 1.4 (Extension theorem). Let k > 0 be a nonnegative integer, 1 < p < oo, U
a bounded domain with with C* boundary. Let V be an open set such that V. O U. Then
there exists an operator £ : WFP(U) — WHFP(RY) such that

(i) (Extension) Euly = u.
(ii) (Linear and bounded) & is linear, and ||Eulyr.pmay < Cllullywrs@)-
(iii) (Support prescription) supp Eu C V.

Proof. Observe that, by the previous approximation theorem, it suffices to consider u €
C>(U) (by density and the boundedness property (ii)).

Step 1: (Reduction to the half-ball case) As in Step 1 in the proof of the previous
theorem, construct the open sets Uy, U, ..., Uk and the partition of unity xo, X1,---, Xk-

Define ug = xxu, and observe that
e ug is already in W*P(R?) and suppug C Uy C V,
e u, € C®°(U), and suppuy C B,, CUNU.
Observe that if we change variables

d71>
)

yl =i — o) for j=1,...,d—1,
yl=ad—y(zl,. . 2

then Uy N U gets mapped into {y € Bx(0) : y¢ > 0}.




Note that the change of variables z + y is C¥, and wuy, is smooth, so ux(y) = ux(x(y))
satisfies, by the chain rule,

||uk(y)HW;7P([7) < CHuk’(x)HWa]:c,p

Step 2: (Extension in the half-ball case) Now we have U = B, (0), W = B:/Q(O), and
suppu € W, and we want to extend u. The idea is the higher order reflection method.
Define

_ . u %> 0
u=u=
Zf:o aju(zl,. .. ,zd=1 —ﬁjxd) z? <0,
where the scaling factor 0 < f; < 1 is chosen so that (z!,...,2971 —p;2%) € B/ (0).
We need to match the normal derivatives on {z? = 0} up to order k. Observe that

6id(u(x1, ot = Baad)) = (—l)jﬂg(aidu)(xl, o adTl —Biad). We get

u(zt, ... 2T 04) = Z]K:O aju(zt, ... 247t 0-),
Opau(zt, ..., 271 04) = Z?:o ;i (=B)(Opau) (2, ..., 2971, 0+)

8§du(x1,...,1:d_1,0+) :Z] 0 i (—=Bi)( mdu)(azl,...,xd_lﬁ—k).

This is equivalent to
K
1= ZJ 0%
L= aj(=5;)

1 :Z] 0= ﬁj)

Written in matrix form, this is a linear system involving a Vandermonde matrix

1 1 1. 1 a0
1 —bo B2 - —Bk a1

1) L (a)% (80K Lok

Now use that fact that if all the 3; are distinct, then this matrix is invertible. This means
that there is a choice of (a, ..., ak) so that these equations hold. This defines @ on B, (x)
which extends u and matches all derivatives up to order K on the boundary {z¢ = 0}.
Finally, put an appropriate smooth cutoff yyy = 1 on U with supp xy C V to define Eu,
ie. Eu = xyu. O
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