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1 Approximation in Bounded Domains and the Extension
Theorem

Today, our goals are

• Prove approximation (or density) theorems for Sobolev spaces.

• Prove extension theorems and the trace theorem (tools for dealing with W k,p(U)
when U is a bounded domain).

1.1 Approximation theorems in bounded domains

Given u ∈ W k,p(U), we want to approximate it by something that is “better” (e.g. u is
smooth or has a nice support property). Last time, we discussed two tools:

1. Convolution and mollification: If f, g : Rd → R, then

f ∗ g(x) =

∫
f(x− y)g(y) dy.

This has the property that

∂xj (f ∗ g)(x) = ∂xjf ∗ g(x) = f ∗ ∂∂xj g(x).

This means that you only need one of the functions to be smooth to get a smooth
result.

For ϕ ∈ C∞c (Rd), if we denote ϕε = 1
εd
ϕ(·/ε), then

ϕεf
ε→0−−−→ f,

where the left hand side is smooth. If f ∈ D′(Rd), this convergence is convergence of
distributions, and if f ∈ Lp(Rd), this convergence is in Lp.
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2. Smooth partition of unity: If {Uα}α ∈ A is a collection of open sets (usually U ⊆
Uα∈AUα) then there exist functions χα(x) (α ∈ A) such that

(i) χα is smooth.

(ii)
∑

α∈A χα = 1 on U , where for all x ∈ U , χα(x) = 0 except for finitely many α.

(iii) suppχα ⊆ Uα.

Theorem 1.1. Let k ≥ 0 be an integer and 1 ≤ p <∞.

(i) C∞(Rd) is dense in W k,p(Rd).

(ii) C∞c (Rd) is dense in W k,p(Rd).

Proof.

(a) This is an application of mollification

(b) Approximate by fχ(1/R), letting R → ∞, where χ ∈ C∞c (Rd) is such that χ(0) =
1.

Theorem 1.2. Let k ≥ 0 be an integer, 1 ≤ p < ∞, and U an open subset of Rd. Then
C∞(U) is dense in W k,p(U).

Proof. Let u ∈W k,p(U), and fix ε > 0. We want to find v ∈ C∞(U) such that ‖u−v‖Wk,p ≤
ε.

Define Uj = {x ∈ U : dist(x, ∂U) > 1/j}, and let Vj = Uj \ Uj+1

Then U ⊆
⋃∞
j=1 Vj , so there is a smooth partition of unity χj subordinate to Vj . Now split

u =

∞∑
j=1

uχj︸︷︷︸
:=uj

.

Then, as suppχj ⊆ Vj , we have that suppuj = supp(uχj) ⊆ Vj . Moreover, uj ∈ C∞c (Rd).
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If we let ϕ ∈ C∞c (Rd) with
∫
ϕ = 1 and suppϕ ⊆ B1(0) is a mollifier, let vj = ϕεj ∗ uj ,

where εj is chosen to achieve

‖uj − vj‖Wk,p ≤ 2−jε, supp vj ⊆ Ṽj = Uj−1 \ Uj+2.

Here, we make use of the fact that supp f ∗ g ⊆ supp f + supp g = {x + y ∈ Rd : x ∈
supp f, y ∈ supp g}. Now take v =

∑∞
j=1 vj . This is well-defined, as Ṽj is locally finite.

This is also smooth, so v ∈ C∞(U). On the other hand,

‖v − u‖Wk,p

∞∑
j=1

‖vj − uj‖Wk,p ≤
∞∑
k=1

2−jε = ε.

Theorem 1.3. Let k ≥ 0 be an integer, 1 ≤ p <∞, and U a bounded open set with ∂U of
class C1. Then C∞(U) is dense in W k,p.

Here, C∞(U) is the set of functions u : U → R such that u is the restriction to U of a
smooth function ũ ∈ C∞(Ũ), where Ũ ⊇ U is open.

Definition 1.1. We say that ∂U is of class Ck if for all x0 ∈ ∂U , there exists a radius
r = r(x0) > 0 such that, up to relabeling the variables, Br(x0) ∩ U = {x ∈ Br(x0) : xd >
γ(x1, . . . , xd−1)} for some Ck function γ = γ(x1, . . . , xd−1) on Br(x0) ∩ (Rd−1 × {xd0}).

For the proof, we want to apply mollification, but the difficulty is what happens near
the boundary. The idea is to first look at a small piece of the boundary at a time.

Proof. Step 1: Let u ∈ W k,p(U). By the definition of C1-regularity of ∂U , ∂U can be
covered by balls {Brk(xk)}Kk=1, in each of which U can be represented as the region above
some C1 graph. The number of such balls, K, is finite by the compactness of ∂U . We may
add to Uk = Brk(xk) an open set U0 which contains U \

⋃K
k=1 Uk, so that {U0, U1, . . . , Uk}

is an open covering of U .
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Let {χk}Kk=0 be a smooth partition of unity subordinate to {Kk}Kk=0, and split

u =
∞∑
k=0

uχk =: u0 +
K∑
k=1

uk.

Here, u0 is compactly supported, and u ∈W k,p(Rd), so we can use mollification, as before.
To deal with the uk with k ≥ 1, it suffices to consider the case where U = Br0(x0)

and suppuk ⊆ V ⊆ U , where V is a smaller ball Br′0(x0), in which Br0(x0) ∩ ∂U is more
concrete.

Step 2: Without loss of generality, assume x0 = 0.

We use a two-step approximation. Let ε > 0.

1. Let wη(x) = u(x + ηed), where ed = (0, 0, . . . , 0, 1), and η will be chosen. Then
suppwη is the support of u shifted by 1. For η small enough, we have

‖u− wη‖Wk,p(U∩Br0 (0))
<

1

2
ε.

Moreover, ε is defined on Br0(0) ∩ U − ηed

2. Let v = ϕδ ∗ wη, and if δ � η (and suppϕ ⊆ B1(0)), then v is well-defined on
V ∩ {xd > γ(x1, . . . , xd−1)}. And if δ is sufficiently small, then

‖v − wη‖Wk,p(U∩Br0 (x0))
<

1

2
ε.

This gives us

‖u− v‖Wk,p(U) ≤
1

2
ε+

1

2
ε = ε.

Moreover, v ∈ C∞(V ∩ {xd > γ(x1, . . . , xd−1)}), which is acceptable.
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1.2 The extension theorem

The extension theorem is a tool to deal with u ∈W k,p(U), where U is a bounded domain,
by producing an extension of u ∈W k,p(Rd) with quantitative bounds on the extension.

Theorem 1.4 (Extension theorem). Let k ≥ 0 be a nonnegative integer, 1 ≤ p < ∞, U
a bounded domain with with Ck boundary. Let V be an open set such that V ⊇ U . Then
there exists an operator E : W k,p(U)→W k,p(Rd) such that

(i) (Extension) Eu|U = u.

(ii) (Linear and bounded) E is linear, and ‖Eu‖Wk,p(Rd) ≤ C‖u‖Wk,p(U).

(iii) (Support prescription) supp Eu ⊆ V .

Proof. Observe that, by the previous approximation theorem, it suffices to consider u ∈
C∞(U) (by density and the boundedness property (ii)).

Step 1: (Reduction to the half-ball case) As in Step 1 in the proof of the previous
theorem, construct the open sets U0, U1, . . . , UK and the partition of unity χ0, χ1, . . . , χk.
Define uk = χku, and observe that

• u0 is already in W k,p(Rd) and suppu0 ⊆ U0 ⊆ V ,

• uk ∈ C∞(U), and suppuk ⊆ Br0 ⊆ Uk ∩ U .

Observe that if we change variables{
yj = xj − xj0 for j = 1, . . . , d− 1,

yd = xd − γ(x1, . . . , xd−1),

then Uk ∩ U gets mapped into {y ∈ Br̃(0) : yd > 0}.
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Note that the change of variables x 7→ y is Ck, and uk is smooth, so uk(y) = uk(x(y))
satisfies, by the chain rule,

‖uk(y)‖
Wk,p

y (Ũ)
≤ C‖uk(x)‖

Wk,p
x
.

Step 2: (Extension in the half-ball case) Now we have U = B+
r (0), W = B+

r/2(0), and
suppu ⊆ W , and we want to extend u. The idea is the higher order reflection method.
Define

ũ = ũ =

{
u xd > 0∑K

j=0 αju(x1, . . . , xd−1,−βjxd) xd < 0,

where the scaling factor 0 < βj < 1 is chosen so that (x1, . . . , xd−1,−βjxd) ∈ B+
r (0).

We need to match the normal derivatives on {xd = 0} up to order k. Observe that
∂j
xd

(u(x1, . . . , xd−1 − βjxd)) = (−1)jβjj (∂
j
xd
u)(x1, . . . , xd−1,−βjxd). We get

u(x1, . . . , xd−1, 0+) =
∑K

j=0 αju(x1, . . . , xd−1, 0−),

∂xdu(x1, . . . , xd−1, 0+) =
∑k

j=0 αj(−βj)(∂xdu)(x1, . . . , xd−1, 0+)
...

∂k
xd
u(x1, . . . , xd−1, 0+) =

∑k
j=0 αj(−βj)k(∂kxdu)(x1, . . . , xd−1, 0+).

This is equivalent to 
1 =

∑K
j=0 αj

1 =
∑K

j=0 αj(−βj)
...

1 =
∑K

j=0 αj(−βj)K .

Written in matrix form, this is a linear system involving a Vandermonde matrix
1
1
...
1

 =


1 1 . . . 1
−β0 −β2 · · · −βK
...

...
...

...
(−β0)K (−β2)K · · · (−βK)K



α0

α1

...
αK

 .
Now use that fact that if all the βj are distinct, then this matrix is invertible. This means
that there is a choice of (α0, . . . , αK) so that these equations hold. This defines ũ on Br(x)
which extends u and matches all derivatives up to order K on the boundary {xd = 0}.
Finally, put an appropriate smooth cutoff χV = 1 on U with suppχV ⊆ V to define Eu,
i.e. Eu = χV ũ.
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